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Word Embeddings: GloVe

Another popular word embedding method is 
GloVe (Global Vectors):

1. The first step in creating GloVe embeddings
is to create a co-occurrence matrix M (just as you did in HW 04). 

Each row in this matrix is the raw embedding for a word:
 

Words:

Co-occurring Words:

…
dog
…
cat
…
king

.. food ….    bowl  ….       queen ….

raw embedding for cat

The original model was trained on 
400,000 words from

• 2010 Wikipedia dump (1 billion 
tokens)

• 2014 Wikipedia dump + Gigaword 
5 (6 billion tokens) 

• Common Crawl (42 billion tokens)

The context window was 21 words 
(10 to left and 10 to right)



2. Next, they adjust the frequency counts to de-emphasize very 
frequent words and very rare words.

3. The third step is to use gradient descent to adjust the
frequency counts further so that for two words w1 and w2,

(Very similar to the gradient descent in Word2Vec). 
They use a least-squares cost function (same as for
linear regression).  

4. Finally, they use a dimensionality-reduction 
algorithm (similar to PCA) to reduce the number 
of columns to 100, 200, 300, etc. 

The authors 
mention in 
the original 
paper that 
they used 
Adagrad with 
a learning 
rate of 0.05 
with 100 
epochs. 

Word Embeddings: GloVe



A third popular word embedding algorithm is Meta’s fastText:

o Uses skip-gram and CBOW approaches, like Word2Vec

o Has pretrained models for 294 languages.

o Unique feature of fastText is that it uses character-level 
information using N-grams!  

You can change many of the parameters, so for example, you can set 
N = 2 and the word matter becomes:

Word Embeddings: fastText



Word Embeddings

All of these approaches provide pre-trained models, and also allow you to train 
on your own corpus. 

Which approach is better?  As usual, “it depends on the task”!

Word2Vec:  Pros:  Two simple training algorithms
                    Cons:  No way of dealing with unknown words, smaller
                                context windows, storage intensive

GloVe:  Pro: Scalable, faster to train than Word2Vec (but see next)
             Con: Large preprocessing cost, storage intensive

fastText:  Pros:  Because of character-level algorithm, better with
                          unknown words and misspelled words
                Cons: parameters require careful tuning

The next question is: How do we extend this to sequences of words, i.e., how 
do we create sentence, paragraph, and document embeddings?



Sentence and Document Embeddings

We used the technique of Average Word Embeddings in HW 04:

Many variations of this simple idea have been proposed, including 
using a weighted average

where the  𝜆i  are determined by the relative importance of the word 
(say, nouns and verbs being more important than conjunctions, etc.)



Sentence and Document Embeddings
Another technique is called Doc2Vec (Paragraph Vectors), which extends the 
basic idea of Word2Vec to paragraphs:

The basic idea is to run Word2Vec but add another vector, called a Paragraph 
ID. This vector is part of what the model tries to predict during training, 
connecting it with the words within the document.

The model is trained on a corpus of paragraphs, with the Paragraph ID shared 
between training samples from the same paragraph. The embedding extracted 
from the hidden layer now contains the meaning of words in one paragraph, in 
some sense storing the topics discussed in that paragraph. 

One-Hot 
Vectors

V = # words
C = 
# paragraphs



Sentence and Document Embeddings
To this point, we have seen a variety of ways to encode sequences of words into a vector 
space:

o BOWs / TF
o TF-IDF 
o TF(-IDF) plus PCA for dimensionality reduction
o Average Word Embeddings based on Word2Vec, GloVe, fastText
o Doc2Vec (Paragraph Vectors)

We can also tweak these by 
o Tokenizing;
o Eliminating stop words;
o Using only the K most common words; 

But all of these have a huge disadvantage: They ignore word order!

      I hate cats and love dogs!      = I hate dogs and love cats!

The solution to this is the technique of Attention, which will be used in the SOTA  

Transformer Algorithm. But in order to motivate this carefully, we shall consider one of the 

classic hard problems in NLP, machine translation….



Machine Translation: The Long View



The Attention Mechanism

The Attention mechanism is a way of encoding 
relationships between words in sequence. 

To see the motivation for the Attention Mechanism, consider 
translating “Separate models are trained in the forward and backward 
directions.” into various languages....



Separate models are trained in the forward and backward directions. 

Notice that, as with most modern languages, the words have a 
similar sequential order, but there is some variation in position:

French:

Spanish

Los modelos separados se entrenan en las direcciones hacia adelante y hacia atrás.

Separate models are trained in the forward and backward directions. 

Des modeles séparés sont formés dan les directions avant et arrière. 

The Attention Mechanism



Separate models are trained in the forward and backward directions. 

Getrennte Modelle werden in Vorwärts- und Rückwärtsrichtung trainiert.

Some languages have a longer-range but predictable 
change in order (e.g., verbs go to the end of the sentence). 

German:

Latin:

Spoiler Alert:  A bit of 
circular reasoning here, as 
the translations were done 
by Google Translate, which 
uses the Attention 
mechanism in a 
Transformer network.  

Singula exemplaria in ante et retro partes exercentur

Separate models are trained in the forward and backward directions. 

The Attention Mechanism



A BRNN can help with this problem, because when it creates the activation 
vector at one point in the sequence, it has access to the backward and 
forward context:

0

The Attention Mechanism: BRNNs



0

However, the ability to remember context ”fades” the farther you are from the 
current activation, and it would be useful to have more control of specific words in 
the forward and backward context. 

The Attention Mechanism: BRNNs



Attention refers the ability to focus on particular words in the backward and 
forward context; the pattern of what words matter in which context can be 
learned by the network.  The pattern can be represented by a probability 
distribution over the sequence of input tokens:

 [      0.005,       0.1,        0.02,      0.25,      0.16,       0.1,         0.26,      0.105,      0.0     ]

Attention Weights

The Attention Mechanism



The Attention Mechanism: BRNNs

The fundamental problem to be solved is how to increase the 
communication between the Encoder and Decoder, to inprove the ability 
of the context vector to hold all the information necessary to do the 
translation:



The basic idea of attention is to train a FFNN to produce these attention 
weights for each output token; the resulting 2D matrix of attention weights 
shows the relationship between the words in the input sentence and those in 
the output sentence.  

The Attention Mechanism: BRNNs



We add a FFNN 
between the encoder 
and the decoder to 
calculate the attention 
vector a<i> for each 
output token. 

Input to FFNN is output 
vector h from Encoder 
and activation vector  
s<i-1> from Decoder. 

Attention weight vector 
a<i> is softmax of output 
e<i> from FFNN.

Element-wise product 
of a<i> and h produces 
the context vector c<i>. 

The Attention Mechanism: BRNNs
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The Attention Mechanism: BRNNs



The Attention Mechanism: BRNNs



Displaying the activation matrix shows how attention was applied to the 
translation: 

The Attention Mechanism: BRNNs



Attention can be used in many other contexts such as Automatic 
Speech Recognition and Image Captioning:

The Attention Mechanism: BRNNs


